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The local-energy-transfer (LET) theory was used to calculate freely decaying 
turbulence for arbitrary initial conditions over a range of microscale- based Reynolds 
numbers 0.5 < R,(t,) < 1009, where t, is the final time of computation. The predicted 
skewness factor S(R,) agreed closely with the results of numerical simulations a t  low- 
to-moderate Reynolds numbers and followed the same general trend at larger values 
of R,. It was also found that, for R,(t,) < 5, the LET calculation was almost 
indistinguishable from that of the direct-interaction approximation (DIA), with the 
difference between the two theories tending to zero as R,(t,)+O. 

Two-time correlation and propagator (or response) functions were also obtained. 
Tests of their scaling behaviour suggest that, contrary to general belief, the 
convective sweeping of the energy-containing range is much less important than the 
Kolmogorov timescale in determining inertial-range behaviour. This result raises 
questions about the accepted explanation for the failure of the direct-interaction 
approximation, thus motivating a discussion about the relevance of random Galilean 
invariance (RGI). It is argued that, for a properly constructed ensemble of 
transformations to inertial frames, invariance in every realization necessarily implies 
RGI. It is suggested that the defects of the direct-interaction approximation can be 
understood in terms of a failure to renormalize the stirring forces. 

1. Introduction 
In  a previous paper (McComb & Shanmugasundaram 1984, hereinafter referred to 

as I) we presented some numerical calculations of decaying isotropic turbulence, 
using the LET theory (McComb 1978). Results were obtained for energy, dissipation 
and energy-transfer spectra a t  low-to-moderate microscale Reynolds numbers 
(15 < RA(tf) < 40) and a t  a single large Reynolds number (R,(t,) = 533), where t ,  is the 
final time of computation. Associated integral parameters were also calculated, and 
comparisons were made with experimental results and with other theories. In this 
paper we present more extensive calculations of the velocity-derivative skewness (or, 
simply, skewness factor), and of velocity correlations evaluated at two different 
times. 

The LET (local energy transfer) theory is a two-point, two-time Eulerian closure. 

t Present address : School of Mechanical Engineering, Cranfield Institute of Technology, 
Cranfield, Bedford MK43 OAL, UK. 
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In I we noted that for R,(t,) < 40 the predictions of the LET theory agree well with 
experimental results, and with the predictions of the well-known direct-interaction 
approximation (DIA) (in Eulerian form : Kraichnan 1959). The main difference 
between the two theories was that LET gave higher values of energy transfer and of 
evolved skewness factor than DIA. 

At R,  = 533, the predictions of LET for spectra also agreed well with experiment, 
and with the two Lagrangian-history forms of DIA, ALHDI and SBALHDI 
(Herring & Kraichnan 1979). In  particular, all three theories yielded the k-g law for 
the inertial range of the energy spectrum a t  this large value of the Reynolds number. 
However, the values of the evolved skewness factor were quite different in the three 
cases, with LET givingS(t,) - 0.35, whereas ALHDI and SBALHDI gave S(t,) - 0.76 
and 0.55 respectively. 

In I we suggested that the general trend of experimental results for S(t,) with R,  
favoured the LET value. Yet, we also concluded that the large scatter in the 
experimental data implied that none of the theoretical values could be said to be 
incompatible with experiment. In  the circumstances, a more detailed investigation 
of the way in which S(t,) depends on the Reynolds number Rh(tf)  seemed to be 
indicated. 

In  this paper, we present the prediction of the LET theory for the continuous vari- 
ation of skewness factor S(t,) with Reynolds number in the range 0.5 < Rh(tE) < 1009. 
This is compared with the predictions of other theories and the results from direct 
numerical simulations. We also hope to shed some light on the relationship between 
LET and other theories by presenting results for the two-time correlation coefficient. 
In  particular, we investigate the effect of both convective and inertial-range 
(Kolmogorov) timescaling as a function of Reynolds number. 

2. Basic equations 
The LET theory is a two-point, two-time closure for the (Fourier-transformed) 

velocity covariance Q(k;t, t’) in terms of the renormalized propagator function 
H(k;t, t’). The velocity covariance is related to the familiar energy spectrum by 

E ( k ; t )  = 4nk2Q(k;t, t ) ,  (2.1) 

and H(k;t, t ‘ )  relates the velocity field of mode k to itself a t  subsequent times. 

equations take the form : 
The above forms are for isotropic turbulence and with this restriction, the LET 

and 

($+vk2)H(k;t,t’) = W(k;t,t’) ( t ’ <  t ) ,  

where v is the kinematic viscosity of the fluid. The inertial transfer terms W and P 
are given by 

rt 1 
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and 

P ( k ;  t ,  t’) = JdyL,.[[ d s H ( k ;  t’, s) &(j; t ,  4 &(lk-jl; t ,  s) 
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where 

and p is the cosine of the angle between the vectors k andj .  
It should be noted that (2.3) and (2.5) are identical (notational differences aside) 

to the corresponding DIA equations, whereas (2 .2)  and (2 .4)  differ from their DIA 
counterparts by the presence of the first term (i.e. the one containing Q-l) on the 
right-hand side of (2.4) for W ( k ; t , t ’ ) .  It should also be noted that the first term on 
the right-hand side of (2.4) differs from the version given in I, insofar as Q(k; t ’ , t ’ )  
replaces &(k;  s, s) in the denominator. The form in I was an incorrect generalization 
of the original derivation for stationary turbulence (McComb 1978). A more recent, 
general derivation of the time-dependent LET theory will be treated elsewhere, but 
here we note that all calculations with the original equation have been repeated with 
the new form, and that the numerical differences were in fact negligible. 

If we introduce the energy transfer spectrum T ( k ,  t )  by the relation 

T ( k ,  t )  = 8nk2P(k;  t ,  t ) ,  (2 .7)  

then the skewness factor is given (Batchelor 1971) by 

where u(t) is the r.m.s. value of any velocity component, h( t )  is the Taylor microscale 
(see I for the defining relationships used) and the microscale Reynolds number is 
defined as 

(2.9) 
W )  u ( t )  

R,(t) = y‘ 
Finally, the correlation coefficient is introduced through the relationship 

(2.10) 

3. Results and discussion 
Equations (2.2)-(2.5) were integrated forward in time from arbitrarily prescribed 

initial spectra. Both wavenumber and time were discretized, and the integrations 
performed numerically. Full details of the numerical methods were given in I, along 
with demonstrations of self-preservation and similarity (i.e. independence of initial 
conditions), and discussions of the errors involved in the computation. As in I, 
equivalent calculations of the DIA equations were also carried out for the same range 
of Reynolds numbers. This allowed us to check our numerical procedures by 
comparing our results for DIA with those of other workers (in this case Herring & 
Kerr 1982). 

The trial spectra may be written in the form 

E( k,  0) = c, kea exp ( - cg k”4) (3.1) 
4-2 
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and reference should be made to I, figure 1, for the various shapes used. Initial 
conditions for a run were set by choosing values for the constants c1-c4, along with 
a value for the fluid kinematic viscosity v. Values of these constants for each run are 
given in Table 1, along with the evolved values of S and R, for LET. Corresponding 
results for DIA are given in Table 2. We also used a trial spectrum suggested by 
J. R. Herring (1987, private communication), and details of this are given in both 
tables. 

3.1. The skewness factor 
Our results for S(t,) as a function of R,(t,) are presented in figure 1.  The LET 
prediction is shown as a continuous line, while the ‘spot values’ for the individual 
calculations may be found in table 1. Two points in particular should be noted about 
the present calculations. First, as R,(tP) becomes small our LET and DIA values tend 
to agree closely with each other. Second, the LET values pass through a small, but 
definite, peak in the neighbourhood of R,(t,) = 10 before settling down to a constant 
value as Rh(tf)  becomes large. 

In  figure 1 we compare our values for the skewness to results obtained by direct 
numerical simulations (Siggia & Patterson 1978 ; Clark, Ferziger & Reynolds 
1979; Herring & Kerr 1982; and Kerr 1985). In particular, the latter two refer- 
ences, when taken together provide data for the skewness factor over the range 
0.46 < R,(tf)  < 82.32. Evidently, the LET predictions agree quite well with these 
simulations in the approximate range 3 < R,(t,) < 15, so we shall consider the two 
cases R,(t,) < 3 and R,(t,) > 15 as separate issues. 

When we first did our calculations a t  Reynolds numbers Rh(tf) < 3, we employed 
the wavenumber range 1.1 < k < 20.8, and obtained very close agreement with 
Herring & Kerr (1982), who used the range 2 < k < 32. For example, typical values 
of evolved Reynolds number and skewness were R,(t,) = 0.37 and S(t,) = 0.066. 
However, in the process of checking the effect of the lower wavenumber cut-off 
on the energy content of the spectrum, we repeated the above calculation with 
0.46 < k < 20.8 to obtain RA(tf)  = 0.48, S(t,) = 0.067 ; and with 0.23 < k < 20.8 to 
obtain Rh(tf) = 0.50, S(tJ = 0.067. Thus, while the evolved skewness is (as one would 
expect) insensitive to changes in the lower wavenumber cut-off, the evolved 
microscale Reynolds number does change to some extent ; and this affects the shape 
of the graph at low RA(tf) .  

Therefore, tentatively, we are inclined to suppose that a t  least some of the 
disagreement in this range between LET and the direct numerical simulation may 
result from a truncation error, due to Herring & Kerr (1982) taking a relatively large 
value for the lower cut-off wavenumber. This view receives some additional support 
if one considers the calculations of Herring & Kerr (1982) for DIA and TFM (test- 
field model: a single time modification of DIA which is compatible with the 
Kolmogorov spectrum for the inertial range). Both calculations of DIA agree very 
well over the range 3 < R,(t,) < 40, but for R,(t,) < 3 our present calculation of 
skewness using DIA falls off more steeply as R,(t,) becomes small. 

The choice of initial spectra was not the same for both our investigation and the 
direct numerical simulation. In  terms of (3. l ) ,  our results for low-to-moderate 
Reynolds number were based on c2 = c4 = 1, with the values of c1 and c3 being varied 
as appropriate. In the case of Herring & Kerr (1982), initial spectra were based on 
c2 = 4, c4 = 2. However, as noted above, our calculations agreed with theirs when we 
took a larger value for the lower cut-off wavenumber. 

Turning now to the situation where the Reynolds number exceeds a value of about 
15, we see that the direct numerical simulation of Kerr (1985) leads to the skewness 
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0.1 1 10 100 lo00 

RA(4) 

.FIQURE 1.  Comparison of the evolved skewness factor with numerical simulations and with results 
from other theories: -, LET; 0 ,  DIA (present results); --, DIA (Herring & Kerr 1982); 
__.__ , TFM (Herring & Kerr 1982) ; 0, Siggia & Patterson (1978) ; ., direct numerical simulation 
(Clark et al. 1979); 8, direct numerical simulation (Herring & Kerr 1982); 0, direct numerical 
simulation (Kerr 1985). 

becoming independent of Rh(te) and reaching an apparent asymptote of S - 0.51 
for 18.3 < R,(t,) < 82.3. In the same region, the LET value of the skewness 
declines below Kerr’s results and then reaches an asymptote of S(t,) = 0.36 for 
146.8 < Rh(tf)  -= 1009. 

We also show four points, from the simulation of Siggia & Patterson (1978), which 
agree more closely with the LET values. Unfortunately, the three points in the 
neighbourhood of R,(t,) = 80 may be affected by high-wavenumber truncation errors 
and are possibly too low. But, the value of S(t,) = 0.43 at R,(te) = 42 comes from what 
these authors call their ‘honest ’ simulation and presumably cannot be faulted in that 
respect. Some support for this result comes from the simulation by Clark et al. (1979), 
but evidently we need more independent numerical investigations in order to arrive 
at an agreed curve for skewness against Reynolds number. 

The latter remark is underlined by a reference to the array of experimental results 
compiled by Tavoularis, Bennett & Corrsin (1978). As we have mentioned before, the 
scatter in the experimental data is such as to rule out any critical comparison of 
theories. In particular, the very high experimental values of the skewness are 
normally attributed to non-Gaussian behaviour, such as stratification effects, which 
certainly would invalidate a comparison with LET (or similar theories). 

3.2. Tirne-correlation functions 
The LET results for the two-time correlations are presented in figures 2-5 for 
R, = 4.7, 38.6, 834 and 1009 respectively. It should be noted that figure 4 is a special 
case in that tree is not equal to t,. We shall return to this point later. In figures 6-8 
we give the corresponding results for DIA for R, = 4.7, 40.5 and 1039. In  all cases, 
the same format is used and we shall now explain this, referring to (2.10) for the 
definition of R(k;  t ,  t’).  

First, we put t’ = trel, where tre, is a fixed reference time, and in most cases, the final 
time for the calculation. Then, for a given value of wavenumber k ,  we may plot 
R(k;  t ,  tree) as a function of a single variable ( t r e f - t ) ,  and a fairly complete picture of 
the function R(k;t,t, , ,) can be built up in this way, by repeating the process for 
additional values of k .  Thus, referring to figure 2(a), it may be seen that we have 
plotted curves of R(k;  t ,  tre,) versus ( t r e f - t )  for seven values of k ,  in this case spanning 
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FIGURE 2. LET two-time correlation function for BA(tref) = 4.7, trd = 0.39, for various wave- 
numbers: x ,  2.00; +, 4.00; 0,  8.00; 0, 11.31; 0, 16.00; A, 26.91; V, 38.05. (a) Unsealed 
results, ( b )  convective scaling, (c) inertial scaling. 

the range 2.00 < k < 38.05. This method of presenting unscaled results has been 
followed in part (a)  of each of figures 2-8. 

In parts (b )  and (c) of each of these figures, we test the effects of convective scaling 
and Kolmogorov scaling respectively. That is, in figures 2 (b) -8(b)  we plot R(k; t, treP) 
against t; where 

i-= krur , , ( s )ds .  (3.2) 



Velocity correlations as predicted by LET theory 99 
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-0.2 
0 I 2 3 4 

i = ( ~ ( t )  k*)l ( r  ref - r )  

FIGURE 3. LET two-time correlation function for R,(t,,) = 38.6, tref = 1.0, for various wave- 
numbers: X ,  1.00;  +, 2.00; 0, 4.00; 0, 6.35; 0,  10.08; A, 16.00; V, 25.40. (a) Unsealed results, 
( b )  convective scaling. (c) inertial scaling. 

In using (3.2), we have followed the example of Orszag & Patterson (1972). This takes 
account of the fact that the turbulence is not stationary, although, in practice, we 
found very little difference between (3.2) and the usual form t= kurms(0) ( t rer - t ) .  
Hence, in figures 2 (b)-8 (b ) ,  one is looking for evidence of a relationship of the form 

where f is an unknown function. 
R( k ; t ,  tref)  = f (q>  (3-3) 
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FIQURE 4. LET two-time correlation function for RA(tret) = 834.1, t,,, = 0.1, for various 
wavenumbers: X ,  2.28; +, 4.56; u, 7.24; 0, 11.49; 0,  18.24; A, 28.96; V, 45.97; D, 91.95. 
(a)  Unscaled results, (b )  convective scaling, (c) inertial scaling. 

In figures 2 (e)-8 (c), R(k;  t ,  tref) is plotted against the scaled variable 

t"= [ E ( t )  k2]4(tre+). (3.4) 
In this case, a good collapse of the data onto one universal curve would imply 

R ( k ;  t ,  tref) = ,fCt". (3.5) 
Referring to these figures, an immediate observation is that neither scaling 
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numbers: x ,  2.28; +, 4.56; 0, 7.24; 0, 11.49; 0,  18.24; A, 28.96; V, 45.97; D, 91.95. 
(a) Unsealed results, ( b )  convective scaling, (c) inertial scaling. 

transformation is completely successful in collapsing all the data to a single curve. 
Yet, several plausible conclusions may be drawn from a comparison of the three 
figures in each case. We list these as follows: 

(1) Both methods are partially successful, in that the convective scaling tends to 
collapse data for the lower wavenumbers, whereas the Kolmogorov scaling is more 
effective for the higher wavenumbers. 

(2) The Kolmogorov scaling is overall the more effective of the two and this 
suggests that ($d)-l is the dominant timescale in these two-time correlations. 
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results, (6) convective scaling, (c) inertial scaling. 

(3) The discrepancy between the two scaling methods increases with increasing 
R,(t,), particularly a t  shorter lag times. 

It is particularly interesting to compare figures 4 and 5, which are taken from the 
same run at  different times. In figure 4, the calculation is not fully evolved, with 
tref = 0.1 ; and, although the Reynolds number is very large, convective scaling is (if 
anything) more effective than inertial scaling. In figure 5, the calculation is fully 
evolved with tref = 0.6, and the superiority of inertial scaling is apparent. 
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Experimental results for two-time correlations are thin on the ground and no 
decisive comparison with the present results is possible. The general position has 
been summarized by Comte-Bellot & Corrsin (19711, who measured narrow-band 
Eulerian two-time correlations in grid turbulence and concluded that timescalings of 
the type given in (3.2) and (3.3) produced only a partial collapse of the R(k; t , t ' )  
curves. Evidently, this provides some support for our own conclusions, although, of 
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course, we go further and argue that the Kolmogorov scaling becomes dominant over 
the convective-sweeping effect, as the Reynolds number increases. 

However, our main motivation in studying two-time correlations has been to shed 
some light on the differences between LET and DIA (Kraichnan 1959) ; and we shall 
discuss this aspect as a separate issue in $4. 
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3.3. Propagator (or response) functions 

The picture presented by the results for the propagator function (or, in the case of 
DIA, the response function) was found to be quite similar to that for the two-time 
correlation, although there was one interesting difference. Using the same convention 
as for the correlation functions, we show some representative results in figures 9-11. 

We found, for the LET propagator H ( k  ; t ,  trer),  that the convective scaling was the 
more effective at R, = 4.7 ; that there was little to choose between either scaling at  
R, = 38.6; and by R, = 1009 the Kolmogorov scaling has become the more effective. 
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In  other words, at very low Reynolds numbers (kurms)-l is the effective timescale for 
the propagator (the reverse being the case for the correlation function) ; while at large 
Reynolds numbers the propagator is (now like the correlation function) dominated 
by the (&k$-' timescale. This behaviour is clearly illustrated by figures 9 and 10. 

The DIA response function behaved in much the same way as the LET 
propagator. In  figure 11, we show the DIA response function for R, = 1039, and the 
superiority of the inertial range scaling is really quite marked. 
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( b )  convective scaling, ( c )  inertial scaling. 

4. Two-time correlation functions as predicted by Eulerian DIA 
We have seen that the collapse of results for various wavenumbers to a single curve 

is much more satisfactory in figures 6 ( c ) - 8 ( c )  than in figures 6(b ) -8 (b ) .  Thus, for 
DIA, as for LET, we conclude that the Kolmogorov scaling is more dominant than 
the convective form ; and that this dominance appears to increase with the Reynolds 
number. 

These results are surprising and may well prove controversial. Kraichnan (1959) 
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has argued that, for wavenumbers that are large compared to the energy-containing 
range, the Navier-Stokes equation may be linearized, leading to the approximate 
result that the correlation and response functions are both equal to the characteristic 
function associated with the single-point, single-time velocity distribution of the 
turbulence. A further assumption, that this distribution may be taken as Gaussian, 
results in the correlation and response functions each having the asymptotic form 
exp (-+z$ k2T2), where wo is the 1.m.s. velocity in any direction and 7 = t - t ‘ .  A similar 
analysis of the DIA (Kraichnan 1959) leads to the asymptotic form J1(2w, k7)/w0 kr .  
Thus, although there are some differences of detail between these two asymptotic 
forms, nevertheless, in both cases the characteristic time is (w, k)-’.  

Inevitably, our present results, if accepted, must raise some questions about the 
significance and range of validity of the above asymptotic forms. Furthermore, they 
must also impinge on some related - and widely held - beliefs in turbulence theory. 
These are the propositions that : (1) a turbulence theory should exhibit invariance 
under random Galilean transformations ; and (2) moment formulations in Eulerian 
coordinates are intrinsically unsuited to the achievement of this result. They arose 
out of an explanation (Kraichnan 1964) of why Eulerian DIA gives a k-i spectrum, 
rather than the Kolmogorov k-e form, and they have been widely accepted (e.g. 
Orszag 1970; Leslie 1973). 

I n  essence, the difficulty with DIA was explained in terms of a difference between 
single-time correlations and two-time correlations. The evolution of single- time 
correlations R ( k ; t , t )  (and hence the energy spectrum) should, it is argued, be 
governed by timescales of order (&$)-’. However, the DIA equations for R(E; t ,  t )  
contain integrals over two-time correlation and response functions and (as we have 
said above) these are supposed to have characteristic times of order (v, E ) - l ;  hence (so 
the argument goes), the introduction of the spurious timescale (w, k)-’)  as the domi- 
nant time-scale for the relaxation of triple-correlations which determine R ( k  ; t ,  t ) .  
Thus, for the stationary case, the asymptotic spectrum becomes E ( k )  - (ewO)fk-f. 

The idea that this problem is equivalent to a violation of a statistical form of 
Galilean invariance again depends on the difference between single-time and two- 
time correlations. Suppose that a homogeneous turbulent field undergoes a Galilean 
transformation to a new frame moving at constant velocity c with respect to its old 
frame. That is, c is constant in both space and time, so that the effect of the 
transformation on the fluctuating turbulent field u ( k , t )  is merely a phase change, 
thus 

Further suppose that c varies randomly from one realization to another (we are 
slurring over what we mean by ‘realization ’ here : we shall be more specific in $ 5 )  and 
that it is specified by Gaussian statistics with zero mean and r.m.s. value E. We now 
consider the mean effect of random Galilean transformations on correlations of the 
Fourier amplitudes u(k, t ) ,  assuming that u and c are statistically independent 
random variables. 

First consider single-time correlations of (for example) u(k, t )  and u(k’, t ) .  For 
homogeneous fields, averaging over u means that the correlation vanishes unless 
k = -k’. Hence, the phase changes introduced in the two modes, according to  (4.1), 

(4-2) 
cancel ; i.e. e i ( k + k 3 c t  = 1 

for each individual uniform convection velocity c. Thus, the single-time correlation 
is unaffected by random Galilean transformation. Indeed, for t = t’ the random and 
deterministic Galilean transformations are indistinguishable. Note that this is a 
general result and applies to simultaneous correlation of any number of velocities. 

u(k, t )  +ei(k.c)tu(k, t ) .  (4.1) 
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Then consider t =+ t’. We no longer have the cancellation shown in (4.2), and this 
term has to be treated statistically. With the assumptions and restrictions made 
above, i t  is easily shown that 

(4.3) ( ( u ( k ,  t )  u(k’, t’))),+exp{ -$?k2(t-t’)2} (u(k, t )  u(k’, t)), 
where ( ), denotes an average over c, and ( ) denotes the normal ensemble average 
over the turbulent fluctuating field u(k, t ) .  

Now the difficulty with Eulerian DIA can be expressed in the following way. 
Single-time correlations should be invariant under Galilean transformation. Thus, 
the equation for R ( k ; t ,  t ) ,  which contains a triple moment evaluated a t  t = t‘ = t “, 
should itself be invariant under random Galilean transformations. But, in the DIA 
formulation, the triple moment is expressed in terms of two-time correlation and 
response functions, which transform according to (4.3). Hence, the DIA triple 
moment - as given by (2.5), with expressions of the form of (4.3) substituted for each 
H and Q factor - will violate the requirement of random Galilean invariancet and 
exhibit a spurious decay even on the time diagonal t = t’ = t”. 

These arguments are given in much more detail by Kraichnan (1964) and have 
subsequently been developed to provide a rationale for the reworking of DIA in 
Lagrangian coordinates. As is well known, the result has been the successful 
Lagrangian-history theories (Kraichnan 1965 ; Kraichnan & Herring 1978). 

Clearly, the idea of invariance under (specified) random Galilean transformations 
has provided a very powerful and successful method of closing the Navier-Stokes 
hierarchy. So much so, that it is nowadays often cited in the literature as a 
fundamental requirement of any analytical turbulence theory, much like (say) 
conservation of energy or momentum, or even deterministic Galilean invariance. 

We feel that  this introduction of a new invariance requirement into mechanics 
requires some more critical attention than it has received hitherto. Clearly, from the 
point of view of the present paper, we must be somewhat sceptical about the reliance 
on the notion that two-time correlations are dominated by energy-range convective 
sweeping times (v,, k) - l .  Our results do not support this view and indeed, as we have 
seen, favour a scaling based on the Kolmogorov inertial-range timescale (d 
Evidently, this - if correct - must raise at least some questions about the accepted 
reasons for the failure of Eulerian DIA. 

Furthermore, in formulating his approach to the Lagrangian method, Kraichnan 
(1964) restricted his attention to some very carefully specified models of the full 
turbulence problem. If the velocity field u(k, t )  in (4.3) is the ordinary (unrestricted) 
turbulent) field, then the averaging process which allows us to separate the averages 
over the distributions of c and u must be a very special one. Consideration of a simple 
examplet shows that an ensemble average calculated after random Galilean 
transformations cannot in general be ergodic. Given a choice between ergodicity and 

t We shall put forward a contrary view in $5. 
1 Consider a fluid in uniform steady motion, with velocity V everywhere. That is, Ti is constant 

in both space and time. KOW apply a particular random Galilean transformation c, such that 
( c )  =I= 0. Then the ensemble average (I/+ c )  is given by 

( V + c )  = V + ( c ) .  
- 

But the time average, ( V + c )  is 
l T  (G) = lim - (V+c)dt = V+c.  

T - m  2T i, - 
Hence ( V + c )  + ( V + c ) ,  and the system is not ergodic. 
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invariance under random Galilean transformation we believe it is much more 
appropriate to select ergodicity . Moreover, the conflict between the two principles 
seems to us to raise questions about the fundamental status of the latter. 

We shall discuss these points further in the next section, but before doing so, we 
note that our results for the DIA two-time correlations raise an even more interesting 
possibility. What is the DIA prediction for the energy spectrum at very high 
Reynolds numbers ? There would now seem to be some doubt about the basis for the 
well-known k-4 law. 

We computed one-dimensional spectra for both DIA and LET, a t  Reynolds 
numbers large enough to show a Kolmogorov-type inertial range (plots of spectra are 
given in I, and not repeated here). We found that, a t  this rather large Reynolds 
number (R, = 533), the two theories were virtually indistinguishable and that both 
gave the Kolmogorov spectrum, to within the accuracy of the numerical methods. 

It is perhaps worth pointing out that this surprising result (for DIA, that is) is not 
a consequence of taking k-) as the initial spectrum. We also took k-g as a trial 
spectrum, and found that both theories evolved away from this, to give k-: as the 
evolved spectrum. 

Unfortunately, there appear to  be no published calculations of DIA for freely 
decaying turbulence at high Reynolds numbers. Kraichnan (1964) obtained a k-4 
spectrum a t  R, - 820, but this calculation used exponential approximation for 
R ( k ; t , t ‘ )  and G ( k ; t , t ’ ) ,  and employed random forcing at low wavenumbers in order 
to obtain a statistically steady state. It is, therefore, not immediately comparable to 
our own calculation (although, we should perhaps mention that we used the same 
numerical methods). Also, Kraichnan found that by restricting the convolution 
integrals over wavenumber in appropriate ways, he could force DIA to give a k f  
spectrum. 

We think that our result for DIA is perhaps just due to our value of 
Taylor-Reynolds number - large though it  is a t  R, - 1000 - not being large enough 
for Kraichnan’s asymptotic analysis to apply. This seems more likely than the 
possibility that we have a numerical artefact, in which integrals over j are evaluated 
with some lower bound which is simply proportional to the labelling wavenumber k. 

5. Random Galilean invariance (RGI) 
In  the previous section, we summarized Kraichnan’s diagnosis of the failure of 

DIA to maintain the property of random Galilean invariance. I n  this section we shall 
examine the idea of RGI in a slightly more formal way. The specific question we shall 
have in mind is this: does a postulate of RGI add anything of a non-trivial nature 
to the usual deterministic requirement 2 

We shall begin by saying what we mean by random Galilean invariance ! Let us 
refer to our usual reference frame as S. Then in S, we perform experiments- 
involving many realizations of the velocity field u(k, t )  - and, by ensemble averaging, 
obtain correlation and propagator functions: Q ( k ;  t ,  t’) and H ( k ;  t ,  t ‘ ) .  

These statistical quantities - along with all higher-order moments and the 
relationships between them - may be transformed to a new coordinate system, which 
is defined through a, frame of reference So, moving with constant velocity c, relative 
to S. It is a cardinal principle of physics that the description of any dynamical 
process should be the same in both systems. For example, the Navier-Stokes 
equation is form-invariant under such a transformation. This property is known as 
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‘Galilean invariance ’ (GI) and is the classical form of Lorentz invariance, applicable 
in systems where all speeds are much smaller than the speed of light. 

How then do we extend this concept to embrace the idea of random Galilean 
invariance T Let us suppose that we transform the results of our experiment in S to 
many different frames of reference So, S,, 8, . . . , moving with velocities co, c,, c2 . . . , 
relative to 8. The velocity of transformation c is taken to be a random variable with 
realizations co, c,,c,, ..., and so on. The set of such realizations {c} defines the 
ensemble, and the distribution P(c)  has to be specified arbitrarily. 

The result is a static ensemble, in which each realization is its own time average. 
As we saw previously, such an ensemble is non-ergodic, and has no dynamical 
significance. But this need not concern us here, for we are interested in the RGI itself, 
rather than in its possible connection with energy transfer and other convective 
processes in turbulence. 

In particular, the formation of ensemble averages - again denoted by ( ), - seems 
to present no problem. Any realization of the velocity field u(k, t )  in S may be labelled 
by the random variable, c, and averaged over P(c) .  From (4.1) we have 

It follows a t  once from the definition of the two-time velocity covariance that we 
may write 

(5.2) 

We shall also assume that propagator or response functions behave in a similar way. 
At this point we should note that the RGI of single-time correlations follows at 

once when we put t = t’ on both sides of (5.2) (also see (4.2)) but that the result 
contained in (4.3) requires the additional assumption that P(c)  is Gaussian, with zero 
mean and r.m.s. value E .  

Even without specifying a form for P ( c ) ,  we can note that every random Galilean 
transformation is identical in form and hence one may state some properties of the 
random Galilean ensemble as follows : 

(1) The Navier-Stokes equation is form invariant under every Galilean trans- 
formation which makes up the ensemble and is hence RGI. 

(2) Simultaneous correlations of velocities a t  two or more space points (as 
obtained by averaging over the turbulent ensemble in S) are invariant under every 
Galilean transformation which makes up the set {c} and hence are RGI. 

(3) Non-simultaneous correlations of velocities a t  two or more space points (as 
obtained by averaging over the turbulent ensemble in S )  are not invariant under 
Galilean transformation. Accordingly, any further averaging over the ensemble { c} 
will tend to ‘smear out’ the turbulent correlation as in (5.2). 

(4) On the other hand, relations between moments, as derived by averaging the 
Navier-Stokes equation over the turbulent ensemble in 8, are form-invariant under 
every transformation making up the Galilean ensemble. Hence it follows that the 
equations relating moments of different order are RGI, even although the individual 
moments themselves are not. 

Property (4) - like (2) - is an exact consequence of homogeneity and runs counter 
to the views of Kraichnan, as discussed in the previous section. Essentially, the 
general corollary of (4) is that any theory which fails to be RGI, also fails to be GI. 

To be more specific, it  can easily be shown that (2.3) for the correlation function 
is invariant under any Galilean transformation and hence under all such 

(&(“)(k;  t ,  f ))’  = (ei(k’c)(t-t’))c &(k; t ,  f ) .  
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transformations. This is true irrespective of whether we take the exact form of 
P(k  ; t ,  t‘), in terms of the triple moment, or whether we take the second-order closure 
given by (2.5). 

Thus, it follows that DIA (like all such Eulerian closures) is invariant under 
Galilean transformation. The further property of random Galilean invariance - as we 
have defined it here - follows in an entirely trivial fashion. It, therefore, seems to us 
that Kraichnan’s definition of RGI must in some way be more special than ours and 
must involve some approximations. If we write (2.5) schematically and average over 
the ensemble of Galilean transformations, thus : 

< P ( k ;  t ,  t ’ )) ,  = ( H ( k  ; t ’ ,  s) Q(j; t ,  4 Q(lk -A; 4 4 ) c ,  

(HQQ),  - <a@ ;t’, $I), (&lj;  4 S)), (Qf 1k-A ;4 s ) ) c -  

Then, even for t = t’, substitution from (4.3) for each of the bracketed terms would 
result in time dependences that would not cancel the phase factor on the left-hand 
side of (2.3). 

Kraichnan’s arguments would seem to require the further step 

6.  Conclusion 
The LET prediction of the skewness factor has been compared with other theories 

and with numerical simulations. The overall result may be seen as quite encouraging, 
although the disagreement between the various simulations needs to be resolved 
before there can be any definitive test of analytical theories. Evidently, there is a 
need for more numerical simulations to be carried out, as such ‘computer 
experiments ’ hold out the possibility of better and more accurate tests of analytical 
theories than have been possible hitherto. The unconvinced reader need only refer to 
the compilation of data from laboratory and environmental experiments, by 
Tavoularis et al. (1978), to see the force of this observation. 

We may also hope that future numerical simulations will provide useful 
information on the two-time correlation and response functions. At present, the only 
published results for R(k; t , t ’ )  appear in the pioneering simulation of Orszag & 
Patterson (1972). But, although we may note in passing that the LET predictions 
agree quite well with these results, they are, in fact, too limited in both Reynolds 
number and wavenumber to shed any light on some of the questions raised in the 
preceding sections. 

Turning, lastly, to the more controversial parts of this work, we note that our 
result of a k-; spectrum for DIA is not as surprising as it might first appear. It has 
long been known that a closure approximation for the correlation function, of the 
form given by (2.5), is rigorously consistent with the Kolmogorov distribution. It 
was shown by Edwards (1965), for the stationary case, that at infinite Reynolds 
numbers the kernel on the right-hand side of (2.5) gives delta functions which balance 
the input a t  k = 0 and the viscous dissipation a t  k = CO. The problem - for DIA - 
arises with the response equation, in which the integration over j diverges a t  the 
origin. This is the well-known ‘infra-red divergence’ of turbulence theory and is 
discussed by Leslie (1973, p. 103). This analysis certainly suggests that, a t  finite 
Reynolds numbers, numerical computation of either the Edwards theory or 
Kraichnan’s DIA will lead to a k-5 inertial range; but with a value for the 
Kolmogorov constant which increases without limit as the Reynolds number is 
allowed to tend to infinity. 
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Intuitively, it may seem that a divergence a t  k = 0 must have some connection 
with a lack of Galilean invariance. But, at the same time, it must be borne in mind 
that all these theories are Galilean invariant, as an exact consequence of 
homogeneity. In  addition, if one accepts our present results that two-time 
correlations are not dominated by convective effects of large eddies, then what can 
we put in place of Kraichnan’s (1964) analysis? 

An alternative has been around for quite some time. The picture due to Edwards 
(1965) was that the correlation equation was compatible with the Kolmogorov 
distribution, because terms which were individually divergent cancelled each other a t  
the singular points, thus giving a well-behaved integral. No such cancellation 
occurred in the response equation. Later, McConib (1974, 1976) showed that this 
could be rectified by noting that the entire nonlinear term behaved as both input and 
output, according to the particular circumstances. The result was a response 
equation which had the necessary cancellations and hence was well behaved. 

Although couched in terms of the Edwards theory, all the physical arguments used 
(McComb 1974, 1976) are equally applicable to D1A.t We are, therefore, tempted to 
speculate that  since (1) the basic ansatz of the DIA is the relationship of the velocity 
field to the stirring forces, and (2) the renormalized version of this relationship is 
equivalent to the original response function of the Edwards (1964) theory, the 
principal defect of DIA is a failure to renormalize the stirring forces. This would be 
in line with the work of Forster, Nelson & Stephen (1977), who applied 
renormalization group ideas to the Navier-Stokes equation. Although their work is 
of limited applicability, nonetheless they showed that a full renormalization program 
for perturbation theory required the renormalization of three quantities : the 
interaction strength, the viscosity, and the stirring forces. Only the first two are 
taken into account in DIA. 
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